3.357 \(\int \frac{\sec ^5(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=35 \[ \frac{2 i a \sec ^5(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}} \]

[Out]

(((2*I)/5)*a*Sec[c + d*x]^5)/(d*(a + I*a*Tan[c + d*x])^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0615494, antiderivative size = 35, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.038, Rules used = {3493} \[ \frac{2 i a \sec ^5(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(((2*I)/5)*a*Sec[c + d*x]^5)/(d*(a + I*a*Tan[c + d*x])^(5/2))

Rule 3493

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*b*
(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1))/(f*m), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2
, 0] && EqQ[Simplify[m/2 + n - 1], 0]

Rubi steps

\begin{align*} \int \frac{\sec ^5(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx &=\frac{2 i a \sec ^5(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.192013, size = 59, normalized size = 1.69 \[ \frac{2 (1-i \tan (c+d x)) \sec ^3(c+d x)}{5 a d (\tan (c+d x)-i) \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^5/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(2*Sec[c + d*x]^3*(1 - I*Tan[c + d*x]))/(5*a*d*(-I + Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.267, size = 90, normalized size = 2.6 \begin{align*}{\frac{8\,i \left ( \cos \left ( dx+c \right ) \right ) ^{3}+8\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) -6\,i\cos \left ( dx+c \right ) -2\,\sin \left ( dx+c \right ) }{5\,{a}^{2}d \left ( \cos \left ( dx+c \right ) \right ) ^{2}}\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

2/5/d/a^2*(4*I*cos(d*x+c)^3+4*cos(d*x+c)^2*sin(d*x+c)-3*I*cos(d*x+c)-sin(d*x+c))*(a*(I*sin(d*x+c)+cos(d*x+c))/
cos(d*x+c))^(1/2)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [B]  time = 1.50598, size = 473, normalized size = 13.51 \begin{align*} -\frac{2 \,{\left (-i \, \sqrt{a} - \frac{2 \, \sqrt{a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{2 i \, \sqrt{a} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac{6 \, \sqrt{a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac{6 \, \sqrt{a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac{2 i \, \sqrt{a} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac{2 \, \sqrt{a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + \frac{i \, \sqrt{a} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}\right )}{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac{3}{2}}{\left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}^{\frac{3}{2}}}{5 \,{\left (a^{2} - \frac{4 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{6 \, a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac{4 \, a^{2} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac{a^{2} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}\right )} d{\left (-\frac{2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1\right )}^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-2/5*(-I*sqrt(a) - 2*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 2*I*sqrt(a)*sin(d*x + c)^2/(cos(d*x + c) + 1)^2
 - 6*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 6*sqrt(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 2*I*sqrt(a)
*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 - 2*sqrt(a)*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + I*sqrt(a)*sin(d*x + c)^
8/(cos(d*x + c) + 1)^8)*(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(3/2)*(sin(d*x + c)/(cos(d*x + c) + 1) - 1)^(3/2
)/((a^2 - 4*a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 6*a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 4*a^2*sin(d*
x + c)^6/(cos(d*x + c) + 1)^6 + a^2*sin(d*x + c)^8/(cos(d*x + c) + 1)^8)*d*(-2*I*sin(d*x + c)/(cos(d*x + c) +
1) + sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1)^(3/2))

________________________________________________________________________________________

Fricas [B]  time = 2.15081, size = 198, normalized size = 5.66 \begin{align*} \frac{8 i \, \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )}}{5 \,{\left (a^{2} d e^{\left (5 i \, d x + 5 i \, c\right )} + 2 \, a^{2} d e^{\left (3 i \, d x + 3 i \, c\right )} + a^{2} d e^{\left (i \, d x + i \, c\right )}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

8/5*I*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c)/(a^2*d*e^(5*I*d*x + 5*I*c) + 2*a^2*d*e^(3*I*d*
x + 3*I*c) + a^2*d*e^(I*d*x + I*c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{5}{\left (c + d x \right )}}{\left (a \left (i \tan{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**5/(a*(I*tan(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{5}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^5/(I*a*tan(d*x + c) + a)^(3/2), x)